Conveyor Belt Maintenance

conveyor belt adjustment
conveyor belt alignment
conveyor belt alignment methods
conveyor belt coefficient of friction
conveyor belt failure analysis
conveyor belt installation
conveyor belt maintenance checklist
conveyor belt maintenance procedure
conveyor belt maintenance tool

conveyor belt operation

conveyor belt tracking
conveyor belt tracking guide
conveyor belt tracking issues
conveyor belt tracking methods
conveyor belt tracking problems
conveyor belt tracking system
conveyor belt tracking tips

Conveyor Belt Maintenance - Keeping Your Conveyor Belt Solution in Top Shape

Conveyor belt systems have a natural life-cycle. Over the course of time, wear and tear will contribute to the belt deteriorating. Depending on how well you maintain your belting solution will determine the length, in which, your belt remains at a ‘performance’ standard. 

The average life-cycle of a conveyor belt is between two to twelve years based on your maintenance. Naturally, we wish to have our conveyor systems last as long as possible; this ensures optimum efficiency and return on investment from your conveyor solution. 

In order to achieve a longstanding conveyor system, there are conveyor belt maintenance requirements that you must undertake to ensure your belt lasts as long as possible.

Installing Your Conveyor System

Before installation a conveyor belt must be squared to ensure stress payloads are even throughout the conveyor belt. In the biscuit manufacturing trade, cotton conveyor belting is used and there is less of a requirement for squaring based on weight loads as the transferring of dough pieces through a conveyor system is relatively light loading.

The recommended squaring method for belting ends is the ‘centreline’ method. The centreline method requires measuring across the belt width on both belt ends at multiple points that are evenly spaced between each, before marking  the center of each point. Finally, a chalk piece is used to draw the centreline from which the square cutting can be executed.

If this is not executed correctly, stress loads will be uneven, which can damage the conveyor belt and ultimately, reduce the life-cycle of the belt, while also ‘failing’ on multiple occasions.

A conveyor belt needs to be squared correctly to make sure stress loads are equally distributed throughout. Unequally distributed loads will stress the belt unevenly which can result in a reduced life-span and an increased risk of downtime as a result of technical failures.

Once the belt has been squared, it must be placed with the correct tension so as to avoid slippage. Having the correct conveyor belt alignment is key. The belting must be centered to avoid any potential problems that could cause further issues with the belt installation.

Naturally, a belt will have a little left-to-right sway. However, the belt tracking must be adjusted to accommodate a sway bias to one side and balance the belt tracking out again.

This will contribute to the belt running smoothly and without noise. Should the belting not be running smoothly or silently, you should review the conveyor tracking immediately.

You should also ensure the belt sits on the support system to avoid what is referred to as the ‘push effect’. This ensures the return path is at an optimal level.

Finally, you must ensure the drive and support rollers are set correctly, otherwise the belt will not run straight and will roll. 

You achieve this by ensuring that your conveyor belt supplier takes care of installing the belt system drive, idle and support roller to fit the requirements of the conveyor belt. By taking this responsibility on yourself, you risk losing the straight run of your belting, which causes a shorter belt lifespan over time.

Checking and Adjusting Your Conveyor Belt Tracking is Correct

As briefly discussed there are a few things you must consider during the installation stage of the conveyor system to ensure that the belt is tracking correctly. Failure to execute these procedures will result in incorrect conveyor tracking and will require further guidance on conveyor tracking to correct the conveyor system.

To ensure you’re tracking is correct, you should measure the belt tension – this will usually show a 1% elongation. To measure belt elongation, you should mark the edges of your belt and tension the take-up adjustment until the marks you have made on the edges align with your required belt tension.

Something to check for when making sure the belt tracking is correct is to keep an eye out for any debris from production. Older or used conveyors will naturally have debris from constant use. This includes belts used in industries like biscuit and cracker production. 

You should also consider contamination – remember the material of a belt conveyor can be susceptible to the elements. It is therefore important to understand the environmental conditions for which your conveyor belt will operate. 

Your conveyor manufacturer will know the direct sciences behind the conditions for each conveyor belting material. During the scoping phase of your build, you should liaise with the conveyor belt manufacturer regarding the belt requirements and conditions for which it is best to operate in. 

Finally, the coefficient of friction must be checked and corrected to ensure that the conveyor tracking is correct. The coefficient of friction varies depending on the conveyor belt material used. To calculate the coefficient of friction is a complex mathematical calculation, using frictional force. To learn how to calculate the friction, use this method.

Correct Way to Perform a Conveyor System Inspection

The first thing you need to look at when performing a conveyor belt inspection is check that the frame is level. A high percentage of conveyor belts that aren’t performing to maximum efficiency are usually down to incorrect tracking as a result of the belt being out of kilter and not level.

If the bed isn’t square, the conveyor will lean to one side and slip. To rectify this, it’s a simple case of using a balanced level to check the frame is straight or ‘square’ and the pulleys are level. To measure levelness, you should measure from one corner to the opposite corner on each side of the conveyor. if these do not equal, the belt is not level and should be leveled. The conveyor belts usually come with ‘squaring rods’ provided by the manufacturers. Squaring rods are used to pull the belt frame into the correct alignment.

Never track the conveyor solely from the steering end pulley, nor from any one side for that matter. This will cause further tracking and alignment issues for the belt; making life a lot harder to maintain or readjust the conveyor system. Any good conveyor solution will come with idlers that will sit underneath the system. Adjusting the rollers will improving belt tracking. 

Performing Belt Failure Analysis

When performing a belt failure analysis in conveyor belt maintenance, there is no specific procedure as such to do so. However, there are analysis techniques that you can undertake through any process of your choice that constitutes being part of a belt failure analysis. 

The first part of the of the analysis is undertaken as per the above process to identify and adjust conveyor system tracking as per your requirements.

Secondly, check if the belt has worn. You can find this information as a result of your conveyor belt system inspection. If the tracking is incorrect and the alignment is incorrect, then the chances the belt is wearing or worn are likely to be higher. 

Thirdly, you must check for abrasions. A belt may catch on something, debris from other machinery or logistical operations within the factory may cause abrasion or a too heavy a load may cause a tear. While quality conveyor systems should be more averse to abrasion, circumstances may cause one nonetheless. Therefore, analyzing the belt for abrasions is an important facet for conveyor belt maintenance.

 

Contact Us
close slider